skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Subedi, Sujan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Excitation of coherent phonons has the potential to dramatically alter the electronic structure of Dirac and Weyl semimetals, enabling sub-picosecond control of their optical and electronic properties. The Dirac semimetal SrMnSb2 is a candidate for such control, with a coherent-phonon mode that is predicted to close and reopen a gap at the Dirac node. Here, through a series of ultrafast pump-probe experiments, we establish suitable samples and conditions for driving the coherent phonon to high amplitude and attempting to observe the gap’s closure. Films of SrMnSb2 grown by molecular-beam epitaxy are shown to have phononic properties matching those of bulk crystals. We find that the phonon can be strongly excited by pump pulses with wavelength near 1500 nm, which will excite a 30-nm film almost uniformly and will penetrate the arsenic capping layers that protect the films. We find that samples withstand pump pulses of fluence up to 20 mJ/cm2, and we demonstrate the potential for sequences of pulses to amplify the oscillation while suppressing other phonon modes. Armed with our new knowledge of the conditions for exciting the desired coherent phonon, future experiments will be well prepared to measure its motion and to observe phononic control of the Dirac-point gap. 
    more » « less
  2. Free, publicly-accessible full text available February 27, 2026
  3. Abstract Terahertz (THz) technology is critical for quantum material physics, biomedical imaging, ultrafast electronics, and next‐generation wireless communications. However, standing in the way of widespread applications is the scarcity of efficient ultrafast THz sources with on‐demand fast modulation and easy on‐chip integration capability. Here the discovery of colossal THz emission is reported from a van der Waals (vdW) ferroelectric semiconductor NbOI2. Using THz emission spectroscopy, a THz generation efficiency an order of magnitude higher than that of ZnTe, a standard nonlinear crystal for ultrafast THz generation is observed. The underlying generation mechanisms associated are further uncovered with its large ferroelectric polarization by studying the THz emission dependence on excitation wavelength, incident polarization, and fluence. Moreover, the ultrafast coherent amplification and annihilation of the THz emission and associated coherent phonon oscillations by employing a double‐pump scheme are demonstrated. These findings combined with first‐principles calculations, inform a new understanding of the THz light–matter interaction in emergent vdW ferroelectrics and pave the way to develop high‐performance THz devices on them for quantum materials sensing and ultrafast electronics. 
    more » « less
  4. null (Ed.)